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We study discrete topological solitary waves(kinks and antikinks) in two nonlinear diatomic chain models
that describe the collective dynamics of proton transfers in one-dimensional hydrogen-bonded networks. The
essential ingredients of the models are(i) a realistic(anharmonic) ion-proton interaction in the hydrogen bond,
(ii ) a harmonic coupling between the protons in adjacent hydrogen bonds, and(iii ) a harmonic coupling
between the nearest-neighbor heavy ions(an isolated diatomic chain with the lowest acoustic band) or instead
a harmonic on-site potential for the heavy ions(a diatomic chain subject to a substrate with two optical bands),
both providing a bistability of the hydrogen-bonded proton. Exact two-component(kink and antikink) discrete
solutions for these models are found numerically. We compare the soliton solutions and their properties in both
the one-(when the heavy ions are fixed) and two-component models. The effect of stability switchings,
discovered previously for a class of one-component kink-bearing models, is shown to exist in these two-
component models as well. However, the presence of the second component, i.e., the softness of the heavy-ion
sublattice, brings principal differences, like a significant difference in the stability switchings behavior for the
kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where
topological discrete(anti)kink states might exist.
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I. INTRODUCTION

Hydrogen-bonded(HB) crystals or chains have been the
object of many scientific investigations in physics, chemistry,
and biology in the last decades. One of the important aspects
of studying these systems is the proton transport that takes
place through the hydrogen bonds. The proton conductivity
in HB networks is remarkably high and, in fact, some of
these materials have been called protonic semiconductors be-
cause the observed proton mobility is of a comparable order
with the electronic mobility in some semiconductors. For
extensive reviews and papers that cover the experimental
situation and the theoretical background as well as the latest
bibliography see, for instance, Refs.[1–6]. Quantum-
mechanical aspects of proton transfers in quasi-one-
dimensional HB systems have been studied in a number of
works [7–11], to mention a few. It is also believed that the
chains of hydrogen bonds act as proton wires providing an
effective pathway for the rapid translocations of protons
from a proton donor to a proton acceptor in several biologi-
cal systems such as bacteriorhodopsin and ATP synthase
[1,12]. Very recent experimental and theoretical studies
[13–17] on filling single-walled carbon nanotubes with water
open new horizons in investigating a variety of challenging
scientific problems at the nanoscale.

In simple terms, a HB chain can schematically be repre-
sented as a diatomic chain̄ X-H¯X-H¯X-H¯, where
the hydrogen atom H(or proton H+) in each lattice unit is
connected with its adjacent heavy ions or more generally
hydroxyl groupsX (or X−) via either a covalents-d or a
hydrogens¯d bond, forming a HB bridgeX-H¯X. The
molecular mechanism for the proton conduction along such a
HB chain comprises two complementary processes:(i) the
propagation of an ionic positive(or negative) defect, when

an excess proton is transferred inside the bridge interchang-
ing the role of the covalent and hydrogen bonds with the
adjacent groupsX, and (ii ) the propagation of a bonding
(Bjerrum) defect, according to which the additional degree of
freedom allows the groupX-H to rotate in such a way that
the interbond proton transfer is possible along the HB chain
(for more details see, e.g., Refs.[1,18]). In this paper, we
focus on the motion of the ionic defects, where onlyintra-
bondproton transfers are involved.

Since the proton transfer in a HB chain is acooperative
process, it is believed that the translational motion of both
the positive and negative ionic defects along the chain is
essentially facilitated. To describe this effect qualitatively, an
effective coupling between the protons in the nearest-
neighbor HB bridges may be introduced, resulting in a soli-
ton (kink) model of the proton transport in HB chains
[19–22]. Owing to the fact that the proton can be found in
two degenerate equilibrium states within the HB bridge, it is
reasonable to model the proton potential by the superposition
of the two realistic(anharmonic) potentials of a standard
form (with a single-well topology, like a Morse or a
Lennard-Jones potential), placed tail-to-tail at such a dis-
tance which provides a double-well form of the proton po-
tential [23–29], as illustrated by Fig. 1. In general, it is not
necessary to construct the intrabond proton potential as a
sum of two single-well potentials because the equations of
motion for the chain can be written in terms ofanypotential
Vsu,rd given as a function of the proton displacementu from
the middle of the HB bridge and the relative displacement of
the ionsX+ from their equilibrium positions[25,30].

Thediscretekink states, their stability and mobility prop-
erties have been studied previously[31] in detail, where the
heavy ions forming the intrabond proton potential from two
Morse potentials were assumed to be fixed. In this limiting

PHYSICAL REVIEW E 70, 056602(2004)

1539-3755/2004/70(5)/056602(11)/$22.50 ©2004 The American Physical Society70 056602-1



case, which can be called the “monoatomic” limit, the ionic
defects are soliton solutions to a one-component(1C) model.
However, in reality, the intrabond proton potential essentially
depends on the relative distance between the adjacent heavy
ions that create this potential. Therefore the dynamics of
such a realisticdiatomicchain must be described by a two-
component(2C) model. As a result, a number of 2C soliton
models have been suggested, one part of which was studied
in the continuum limit[21,22,25,32–43], while the discrete-
ness effects were investigated in other 2C models
[26,28,44–53]. Even though the discreteness effects were
studied for many 2C models used to describe the proton
transport in HB chains(see, e.g., Refs.[26,51]), such a phe-
nomenon as stability(or symmetry) switchings of the(anti-
)kink stationary states and related(anti)kink transmission at
some velocities was not yet examined in detail for any of the
2C models. As discovered numerically by Peyrard and Re-
moissenet[54], the switching effect occurs due to the two
factors,(i) the lattice discreteness and(ii ) the shape of the
on-site potential in a kink-bearing model. The typical ex-
ample of this situation is the discrete nonlinear Klein-Gordon
model with the Remoissenet-Peyrard substrate potential[55].
This model is one component; however, switchings of this
type should occur also in a 2C model if the ion degrees of
freedom allow the intrabond proton potential to take an ap-
propriate shape. Even though the switching effect is expected
to take place in the 2C case, it is not clear whether the soft-
ness of the heavy-ion sublattice does facilitate or oppose this
effect. For instance, one would expect that due toself-
consistentformation of 2C(anti)kink states, instead of fixed
switching points in the proton-proton coupling parameter,
some finite intervals(windows) resulting in stronger stabili-
zation of stability switchings could appear.

The present paper aims to proceed with the type of inves-
tigations undertaken previously[31] for the 1C kink model
for proton transport, taking into account the degrees of free-
dom of the heavy-ion subsystem, which are important for the
dynamics of the total two-sublattice system. Although sev-
eral 2C models for proton transfers have been suggested so
far, here we would like to restrict ourselves to a 2C model
that contains aminimal number of couplings[like the con-
ventional models such as the monoatomic or diatomic(a or
b) Fermi-Pasta-Ulam chain, thef4 model, or the Frenkel-
Kontorova model], contrary to a general model studied ear-
lier [26] by Savin and one of the authors(A.V.Z.) of this
paper, where all possible nonlinearities(anharmonicities)
have been involved. In the present paper we would like to
consider only those(basic or characteristic) nonlinearities,

which are responsible for the shape formation of the proton
potential. Onlyone anharmonicity is sufficient to describe
properly a hydrogen-bonded chain, namely the ion-proton
pair potential of a realistic form(e.g., a Morse or a Lennard-
Jones potential). As regards other forces, it is sufficient to
consider them in an harmonic approximation. This type of
modeling can be used for nanofluidic devices such as a
water-filled carbon nanotube, where the on-site potential for
heavy ions(oxygens) is mainly formed due to the interaction
between the water molecules inside the tube and the charged
carbon atoms. Another 2C model[21], where the discrete-
ness effects have been studied in detail by Cretegny and
Peyrard[51] using a collective coordinate approach, is not
consistent with Fig. 1 and describes a more specific physical
situation.

It is not possible to provide adouble-well form of the
intrabond proton potential within a standard diatomic chain,
usingonly nearest-neighbor interactions. Therefore some ad-
ditional interactions with appropriate parameters, which do
not allow the adjacent heavy ions to approach very close to
each other, should be involved into the model. For archetypal
simplicity of the 2C model, it is sufficient to impose either(i)
an external, single-well on-site potential for each heavy ion
of the chain, periodically located at a sufficiently large dis-
tance[see Fig. 2(a)] or instead(ii ) a nearest-neighbor cou-
pling between the adjacent heavy ions, with a sufficiently
strong strength and a sufficiently large equilibrium distance
between them[see Fig. 2(b)]. From a physical point of view,
both these cases are of interest. While the former case can
describe the dynamics of a HB chain formed in a water-filled
pore (e.g., in a carbon nanotube or bacteriorhodopsin), the
latter case belongs mostly to quasi-one-dimensional HB
crystals or isolated macromolecules.

Since the chain is diatomic, in both the cases, the spec-
trum of small-amplitude oscillations consists of two bands.
In the former case, when the(decoupled) heavy ions are
subject to the on-site potential, both the lower and upper
bands are of the optical type, whereas in the latter case, when
the coupling between the nearest-neighbor ions is included
and the whole diatomic chain is totally isolated from any
external environment, the lower band is of the acoustic type.
Therefore we refer to these 2C models as the 2CO[see
Fig. 2(a)] and 2CA [see Fig. 2(b)] models (or chains),
respectively.

FIG. 1. Schematics of interactions in one unit cell of a 2C HB
chain.

FIG. 2. Schematics of(a) 2CO and(b) 2CA chain models.
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The first question that arises while studying the discrete
dynamics of a 2C HB chain is to understand how the heavy-
ion component of the diatomic chain influences the transpar-
ency for the propagation of(anti)kinks with narrow profile.
Since the proton(anti)kink component appears to be
“dressed” by distortions of the heavy-ion sublattice, it is not
obvious that the kink transmission effect for narrow topo-
logical solitons in the 1C model with a double-Morse poten-
tial [31] can be extended to the 2C topological(anti)kinks.
More precisely, it should be examined how the softness of
the background sublattice affects the bifurcation structure
and symmetry switchings of the proton(anti)kink states.

Another important specific consequence that arises owing
to the softness of the background of a HB chain is the obvi-
ous difference of the kink and antikink profiles. This “kink-
antikink asymmetry” originates from the dependence of the
barrier height in the double-well proton potential on the dis-
tance between the nearest-neighbor ionsX− that form this
potential and the self-consistent description of the proton-ion
interaction. Indeed, under forming the 2Ckink state, the pro-
ton sublattice is locallystretchedat the kink center implying
in this region a localizedcontractionof the heavy-ion sub-
lattice. As a result, the barrier for proton transfers that de-
pends on the distance between the adjacent heavy ions in-
creases for the kink. This is an intuitive argument and
therefore the opposite situation seems to occur in the central
region of the 2Cantikink. In fact, as shown below in this
paper by using numerically exact methods, the 2C antikink
profiles in both the “optical” 2CO and “acoustic” 2CA chains
appear to be rather sophisticated with unexpected symme-
tries and topologies. This is because of a nontrivial balance
of forces in the 2C chains. As regards the(anti)kink mobility,
it is expected(see also Ref.[26]) that the mobility of the 2C
kink (negative ionic defect) should be lower than that of the
antikink (positive ionic defect). Indeed, such a situation may
occur in realistic systems. Thus, as known from experiments
[56], the mobility of the positive ionic defects in ice exceeds
by one order the mobility of the negative ionic defects. This
phenomenon of asymmetric behavior of the 2C antikinks
(positive defects) and the 2C kinks(negative defects) has
been confirmed by molecular dynamics simulations previ-
ously [26] using a general 2C model for proton transport
being a combination of the 2CO and 2CA models with addi-
tional nonlinearities involved.

The paper is organized as follows. In the next section, we
present the equations of motion for a general 2C chain model
that comprises both the 2CO and 2CA models and discuss
the spectrum of small-amplitude oscillations. In Sec. III, we
find the discrete profiles of stationary kink and antikink so-
lutions, and analyze stability switchings for the 2CO and
2CA chains. Possible applications of the stability switching
effect are discussed in Sec. IV. Conclusions are given in
Sec. V.

II. THE TWO-COMPONENT MODEL

The 2C chain model that describes the dynamics of the
proton and ion interacting sublattices is a one-dimensional
diatomic chain of coupled particles with two alternating

masses,mp and M being the masses of the proton and the
heavy ion, respectively. The ion and proton subsystems in-
teract with each other via the intrabond proton potential
formed by the neighboring ions. The assumption of fixed
ions can formally be reached in the limitM→`, resulting in
the 1C(monoatomic) model, wherein only the proton part of
the Hamiltonian[31] has been taken into consideration. The
total two-sublattice Hamiltonian that includes both the 2CO
and 2CA models can be written in the form

H = o
n
F1

2
q̇n

2 +
m

2
Q̇n

2 +
kp

2
sqn+1 − qnd2 +

ki

2
sQn+1 − Qnd2

+
ko

2
Qn

2 + Vsun,rndG , s1d

where the heavy ions and protons are labeled according to
the sequence

h. . . ;Qn−1,qn−1;Qn,qn;Qn+1,qn+1; . . . j.

Here and in what follows we adopt the dimensionless de-
scription, whereqn is a dimensionless proton displacement of
thenth proton in the hydrogen bridge from the middle of the
nth andsn+1dth heavy ions, when these ions are in equilib-
rium positions;Qn is a dimensionless displacement of thenth
heavy ion from its equilibrium position; andm=M /mp the
relative heavy-ion mass. The displacementsQn8s andqn8s are
scaled by the lattice constantl. The overdot denotes the dif-
ferentiation with respect to the dimensionless timet= t / t0,
where t0= lÎmp/«0, with «0 being the activation energy for
proton transfers over the barrier in the HB bridge when all
the heavy ions are fixed at a distance(lattice spacing) l. The
coupling constants are given in the dimensionless formkp
=Kpl

2/«0 (coupling between the protons in the adjacent HB
bridges), ki =Kil

2/«0 (coupling between the adjacent ions),
andko=Kol

2/«0 (coupling of the ions with the on-site poten-
tial). The two-dimensional intrabond proton potentialVsu,rd
is assumed to be a symmetric double-well function(with
respect to variableu) of a general form with two minima at
su,rd=s±a,0d (more details on the topology of this potential
are given in Ref.[30]). The lattice variablesun and rn are
defined through the relations

un = qn − 1
2sQn + Qn+1d,

rn = Qn+1 − Qn. s2d

Similarly to Ref.[31], in order to have the explicit expres-
sion forVsu,rd, we choose a pair of Morse potentials, placed
tail-to-tail as shown in Fig. 1, resulting in

Vsu,rd = Fa − coshsbude−br/2

a − 1
G2

, s3d

where the parameterb measures the curvature along theu
direction of the potential surface atr=0. The parameterb is
adjustable, while the other parametera can be computed
through the equilibrium distancer0 of a single Morse poten-
tial [26,30] using the relation
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a = 1
2exp fbs 1

2 − r0dg . s4d

Then the two equilibrium positions ±a (at r=0) are found
from the equationa=coshsbad. Throughout the paper we
taker0=0.25 andm=17 (as an example of the hydroxide ion
OH−). The equations of motion that correspond to the Hamil-
tonian (1) take the form

q̈n = kpsqn+1 − 2qn + qn−1d −
]

] qn
Vsun,rnd, s5d

Q̈n = ski/mdsQn+1 − 2Qn + Qn−1d − sko/mdQn

−
1

m

]

] Qn
fVsun−1,rn−1d + Vsun,rndg. s6d

Before studying the 2C(anti)kink states, let us consider
the spectrum of small-amplitude oscillations. After the lin-
earization of the potential(3) around one of the global
minima su,rd=s±a,0d and inserting this linearized expres-
sion into Eqs.(5) and (6), we get the following dispersion
law:

v±
2skd = Askd ± ÎA2skd − 2Bskd, s7d

where

A = skp + ki/mds1 − coskd − Cs1 + coskd/2

+ Cfa2 + sa2 − 1dmg + ko/2m,

B = s1 − coskdf2s1 − coskdki + kogkp/m+ Csa2 − 1d

3f2s1 − coskdki + kog+ Cs2a2 − 1 − coskd

3s1 − coskdkp,

C =
b2

sa2 − 1dm
. s8d

Similarly to the standard case of the diatomic chain with
only a nearest-neighbor coupling involved, the dispersion re-
lation (7) also consists of two parts: the low-frequency
branchv−skd and the high-frequency branchv+skd. These
branches are depicted in Fig. 3 for both the 2CO(ki =0 but
koÞ0) [see panels(a) and (b)] and 2CA(ki Þ0 but ko=0)
[see panels(c) and (d)]. In the former case, all the oscilla-
tions are of the optical type and therefore the 2CO chain is
“closer” to the 1C model[31] than the 2CA chain.

As the system parameters vary, both the branches change
their shape getting more flat or steep as demonstrated by Fig.
3(b), but due to “repulsion” between them, they do not inter-
sect. In the latter case, when the chain is isolatedsko=0d, the
upper branch describes the dispersion law of the optical
small-amplitude oscillations while the lower branch is of the
acoustic type(zero frequency atk=0). The 2C model given
by the Hamiltonian(1) contains two characteristic velocities
of small-amplitude waves in each of the sublattices:c0
; lÎKp/mp (in the proton sublattice) andv0; lÎKi /M (in the
ion sublattice). In the dimensionless description, these ve-
locities are measured in unitsl / t0: sp;c0t0/ l =Îkp and si

;v0t0/ l =Îki /m. In general, the two casesc0.v0 andc0,v0

may be considered, depending on the ratio ofkp andki. The
spectra of small-amplitude oscillations in the 2CA chain are
depicted in panels(c) and (d) of Fig. 3. For the acoustic
branch in the 2CA chain, the phase velocity of the small-
amplitude wavesfs−=v−skd /kg attains a maximum in the
limit k→0. Its explicit value is

smax=Îkp + ki

1 + m
. s9d

Note that the velocity(9) coincides with the lower edge of
the second band of admissible kink velocities in the con-
tinuum limit [30].

III. DISCRETE KINK STATES, THEIR STABILITY, AND
BIFURCATIONS

All the possible(stable and unstable) stationary profiles of
the proton(anti)kink have been classified previously[31] on
the basis of the 1C model. In particular, it has been shown
that besides the(anti)kink states with a symmetric profile
centered at a heavy ion or a proton, there exist two other
types of stationary solutions:(i) (anti)kinks with an asym-
metric profile and(ii ) symmetric(anti)kinks with a zigzag-
like profile. A close connection between the symmetric and
asymmetric solutions has been shown to exist in the region,
where the ion-centered and proton-centered(anti)kink solu-
tions switch their stability. In the exactly solvable limitb
→`, one can write down explicitly the expression for the
(anti)kink profile (see also Ref.[57]). The (anti)kink profile
consists of three distinct parts: the left and right tails, where
un attains exactly one of the two minima of the double-well
potential, and the core, where an arbitrary finite numbersm
=0,1, . . .d of protons can be found. The protons lie on the
barrier of the double-well proton potential, whose value is
constant in the intervals−a,ad [see Eq.(3) asb→`]. In this
particular case, the stationary(anti)kink solutions can easily
be found from the equations of motion(5), fixing the heavy-

FIG. 3. Two bands of small-amplitude oscillations forb=10: (a)
kp=10, ki =100, andko=10; (b) kp=10, ki =5000, andko=10; (c)
kp=50, ki =100, andko=0; (d) kp=3, ki =150, andko=0.
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ion positions withrn;0. Then the energy of the(anti)kink
states in this limit can be calculated from the Hamiltonian(1)
for any number of protons on the barrierm,

Emskpd = m+ 2kpa
2/sm+ 1d, m= 0,1, . . . . s10d

Despite Eq.(10) being obtained in the limit that describes
a mathematical idealization of the proton-ion interaction,
nevertheless, it is very instructive because it gives in very
simple terms an insight into the phenomenon of stability
switchings of the(anti)kink stationary states. First, it is worth
to notice that Eqs.(10) admit many(in fact, a countable set)
kink solutions, each corresponding to an integerm at a fixed
kp. Obviously, in the limit of smallkp, the states with smaller
number of protons on the barrierm have smaller energy, so
that the state withm=0 is the most energetically favorable
one. Second, the energy dependencies of these solutions start
to intersect each other as long askp increases(this can easily
be observed if the corresponding curves are plotted; see, e.g.,
Fig. 4 of Ref. [31] for illustration). Therefore, the crossing
points of the lines given by Eqs.(10) with two different
numbers of protons on the barrier,m1 and m2, which take
place at certain critical values ofkp, can be determined from
the equationEm1

skpd=Em2
skpd. The most interesting case is

that when the lines, which correspond to an(anti)kink state
with the lowest energy and the first state excited, intersect.
What is happening in the vicinity of this point is a pitchfork
bifurcation. An initially unstable symmetric(anti)kink solu-
tion (e.g., proton-centered) becomes stable, and two asym-
metric unstable(anti)kink solutions appear. This situation ex-
ists in some small interval of the parameterkp, after which
the asymmetric(anti)kinks disappear and the previously
stable symmetric solution(in this case, an ion-centered one)
becomes unstable. If we takeb to be finite but large, the
above-mentioned situation will persist, at least, for the low-
energy(anti)kink solutions. Some of the “remnants” of the
lines given by Eqs.(10) will cross each other(while inter-
changing stability via pitchfork bifurcations) several times as
long askp increases, the higher-energy kink states may be
turned into zigzag(anti)kinks or simply disappear. As long as
b decreases, less and less number of the solutions with many
particles on the barrier survive, while only the proton- and
ion-centered states interchange their stability. Note that in the
limit b→0 the potential(3) coincides with the well known
f4 model. In the limit, when the parameterb is too small, the
switchings disappear and the only “survivors” from the ex-
actly solvable limit are the two(anti)kinks with different
(proton- and ion-centered) symmetries. For allkp, their en-
ergies are different, so no switching takes place. Therefore
we emphasize once more that the switchings, although not
present in the conventional models such as thef4 and sine-
Gordon ones, is a generic effect, which happens in a wide
class of nonlinear Klein-Gordon models if the barrier of the
on-site potential(in our case, the intrabond proton potential)
is flat enough.

Now we focus on numerical studies of kinks and anti-
kinks in the 2C model for finite values of the curvatureb.
We treat separately the 2CO and 2CA diatomic chains. Fig-
ure 4 demonstrates the symmetric stationary states for the
2CO model. Note that due to the difference between the

profiles of the 2C kink and the 2C antikink, we study them
separately.

In general, this difference, clearly demonstrated by Fig. 4
(we call it a “kink-antikink asymmetry”), follows from the
asymmetric dependence of the double-Morse potential(3) on
r (at the pointr=0). More precisely, due to the flatness of
this potential, the effect of stretching the heavy-ion sublattice
on increasing the barrier for proton transfers is not so crucial
as a contraction of this sublattice on lowering this barrier. As
a result, the 2C kinks in the 2CO model, where the bound-
aries are fixed, are rather wide, whereas the 2C antikinks are
quite narrow(see Fig. 4). The insets show the profiles of the
deformation of the heavy-ion component. Due to the fact that
each ion is placed in the external on-site potential, the ion
displacements tend asymptotically to zero(the ground state)
asn→ ±`. Note also the symmetry change of the ion com-
ponent of the antikink profile, when its center being localized
at an ion passes to a proton[compare panels(b) and (d) of
Fig. 4]. Therefore the behavior of 2C(anti)kink profiles is
not so obvious and simple as in 1C kink-bearing models.

The (anti)kink profiles for the 2CA chain are shown in
Fig. 5. Here the difference between the kinks and antikinks is
also present, but in another context. Owing to the absence of
the on-site potential for the heavy ions, the localized defor-
mation of the ion sublattice has a steplike profile, similarly to
the proton component, but the orientation of these steps is
again not obvious[compare panels(a) with (b) and (c) with
(d) of Fig. 5 and note the same(monotonically decreasing)
behavior of the ion-component profiles]. On the other hand,
since the heavy-ion sublattice is isolated from any external
forcing, the proton and ion displacements are arranged in
such a self-consistent way that both the kinks and antikinks
appear to be rather narrow, despite lowering the barrier
height for proton transfers with decreasing the ion-ion dis-
tance. Intuitively, it seems that an opposite behavior should
occur, but the total balance of forces in the 2C chain model
appears to be rather complicated to draw correct qualitative
conclusions. Notice also that for the heavy-ion sublattice in

FIG. 4. Two-component profiles of monotonic symmetric(anti-
)kinks in the 2CO chain(ki =0 andko=5) with kp=20 andb=5: (a)
ion-centered kink,(b) ion-centered antikink,(c) proton-centered
kink, and(d) proton-centered antikink.
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the 2CO chain, the ion positions at the boundaries are fixed
(like Dirichlet boundary conditions), whereas the boundary
conditions for the ion sublattice in the 2CA chain are free
(like Neumann boundary conditions).

A. The 2CO chain model

In this section, we deal with the stationary(anti)kink so-
lutions for the 2CO chain(ki =0 but koÞ0). Using the
above-mentioned numerical techniques, we compute the kink
and antikink solutions from the anticontinuous limitskp

→0d. Varying the coupling constantkp at a relatively weak
interaction of the heavy ions with its substrate,ko, we check
how the(anti)kink energies change. In Figs. 6 and 7, we plot
the energy dependence on the coupling constantkp at differ-
ent curvaturesb for the antikink, and in Fig. 8 for the kink.
These figures exhibit a close similarity to the results obtained
for the 1C model[31]. Thus, in Fig. 6, curve 1 corresponds
to the ion-centered antikink, whereas curve 2 corresponds to
the proton-centered one. We see that before the pointkp
.41.55, the energy of the ion-centered antikink is less than
that of the proton-centered one, whereas the energies of these
solutions coincide, when we pass this point. At higher values
of kp, the situation becomes opposite; the energy of the
proton-centered antikink is less than the energy of the ion-
centered one. Therefore the interchanging of the antikink sta-
bility with the different symmetry after passing this point
takes place.

For the 1C model[31], we have observed several switch-
ings of stability, which take place along all the way up to the
continuum limit. Unlike the 1C limit, in the 2CO chain, the
number of switchings is determined by the interaction of the
heavy-ion sublattice with the on-site potential. More pre-
cisely, when this interaction is sufficiently weak, we observe
only one switching point. For stronger interaction, as we
approach the 1C limit, the number of switchings increases.
The region in the vicinity of the critical point is depicted in

the upper inset of Fig. 6, where a new type of asymmetric
stationary solutions represented by curve 3 is shown to con-
nect the above-mentioned symmetric solutions via the bifur-
cation points. Therefore the bifurcation scenario in this case
completely coincides with that found for the 1C model(see
Fig. 8 of Ref.[31]).

Another (unstable) symmetric zigzaglike stationary anti-
kink solution with higher energies is represented by curve 4
in Fig. 6. Note that for a sufficiently soft(e.g.,kp,5) 2CO
chain, the proton component of the antikink solution takes a
peculiar zigzaglike shape as illustrated in the two left lower
insets of Fig. 6, contrary to the standard monotonically de-
creasing(antikink) shape known in the continuum limit. For
stronger proton-proton couplings(e.g., kp,20) the proton-

FIG. 5. Two-component profiles of monotonic symmetric(anti-
)kinks in the 2CA chain(ki =5 andko=0) with kp=20 andb=5: (a)
ion-centered kink,(b) ion-centered antikink,(c) proton-centered
kink, and(d) proton-centered antikink.

FIG. 6. Dependence of the energy of symmetric ion-centered
antikink (curve 1) and symmetric proton-centered antikink(curves
2 and 4) on coupling constantkp in the 2CO chain(ki =0 andko

=5) with b=5. The upper inset shows more detailed behavior of the
antikink energyE in the vicinity of the stability switching, whereas
curve 3 corresponds to the antikink with asymmetric profile. The
lower four insets show the profiles of proton-centered antikinks at
fixed kp=5. In all figures, solid lines correspond to stable and
dashed lines to unstable states.

FIG. 7. Dependence of the antikink energyE on the coupling
constantkp in the 2CO chain(ki =0 andko=5) with (a) b=10 and
(b) b=20. Solid lines show stable and dashed lines unstable states.
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component tails of the(proton-centered) antikink 2CO zig-
zaglike profile become more smooth as shown in Fig. 4(d).
Thus, proton-centered antikinks appear to be deformed to
this specific(zigzaglike) shape due to the deformation of the
intrabond proton potential(3) caused by the ion displace-
ments, although at stronger proton-proton couplingskp, the
influence of the heavy-ion sublattice on the proton profiles
practically vanishes.

In Fig. 7, we plot the dependence of the antikink energy
on the coupling constantkp for higher values of the curva-
ture b. Here one can see that with the growth ofb, the first
switching occurs earlier being more pronounced. Curves 1 in
panels(a) and (b) correspond to the ion-centered antikink
and curves 2 to the proton-centered one. They cross each
other atkp.15.97 andkp.11.24 forb=10 andb=20, re-
spectively. One can see that for higherb, the bifurcation
scenario remains the same, wherein the asymmetric antikink
solutions represented by curve 3 in Fig. 7(a) and curve 4 in
Fig. 7(b) play the same role.

In Fig. 7(b), one can observe the coexistence of the anti-
kink solutions of the same symmetry with the different num-
ber of particles on the barrier. Curve 3 in this figure corre-
sponds to the ion-centered antikink with two protons on the
barrier. This coexistence originates from the limitb→`.
Zigzaglike antikinks also appear in these cases and they are
represented by curves 4 and 5 in Fig. 7(a), and curves 5 and
6 in Fig. 7(b).

Figure 8 shows one switching for the kink stationary
states. Here the transition of stability of the ion-centered kink
(curve 1) and the proton-centered kink(curve 2) occurs at
significantly stronger interaction of the ion sublattice with its
substrate compared with the case of the antikink.

Thus, we have studied the dependence of the(anti)kink
energy on the proton-proton coupling constantkp in the 2CO
model. As expected, similarly to the 1C chain for proton
transfers, we have observed the stability(symmetry) switch-
ings and the pitchfork bifurcations associated with them.
However, in the case when the heavy-ion sublattice is soft
(e.g., the constantko is not so large), this similarity takes
placeonly for the antikink but not for the kink state. Only for

sufficiently large values ofko, the switchings also occur for
the kink. In other words, in the limitko→`, the 2CO model
is transformed into the 1C model, for which the switching
effect has been studied in detail[31].

B. The 2CA chain model

In this section, we discuss the switching effect that takes
place in the 2CA chain. Similarly to the 2CO chain, we have
also investigated the same dependence of the(anti)kink en-
ergy on the proton-proton couplingkp for different values of
b. In Fig. 9, we show the antikink energy as a function of the
proton-proton coupling constantkp. Panels(a), (b), and (c)
correspond to the casesb=5, b=10, andb=20, respectively.
In all the panels, curves 1 correspond to the ion-centered
antikink, curves 2 to the proton-centered antikink, and curves
3 to the asymmetric antikink stationary solutions. Forb=5,
the first switching occurs atkp.53.65. At this critical point,
the energies of both types of the antikink states coincide and
after passing this point, the interchange of the stability of the
ion-centered and proton-centered antikink states takes place.
Here the bifurcation scenario is similar to that reported pre-
viously [31] for the 1C chain. At higher values ofb, the first
switching occurs earlier; forb=10, it happens atkp.15,
and forb=20, it appears earlier. For such a large value ofb,
we have observed the coexistence of the states with the same
symmetry, but with the different number of protons on the
barrier; in Fig. 9(c), curve 4 corresponds to the ion-centered
antikink solution with two protons on the barrier. However,
this solution seems to be unstable for all values ofkp.0.

Figure 10 illustrates one switching for the kink. One can
see that the switching occurs at higher curvaturesb, and the
parameters of the interparticle interactionskp and ki. Note

FIG. 8. Dependence of the kink energyE on the coupling con-
stantkp in the 2CO chain(ki =0 andko=70) with b=10. Solid lines
show stable and dashed lines unstable states.

FIG. 9. Dependence of the antikink energyE on the coupling
constantkp in the 2CA chain(ki =5 andko=0) with (a) b=5, (b)
b=10, and (c) b=20. Solid lines show stable and dashed lines
unstable states.
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that even at these large values, there are no intersection
points between the ion-centered solution(curve 2) and the
asymmetric solution(curve 3).

To summarize, we have seen that for the 2CA chain, some
properties, which are characteristic for the 2CO chain, sur-
vive (such as stability switchings or the coexistence of two
solutions of the same symmetry).

IV. PROTON TRANSPORT AND THE STABILITY
SWITCHING EFFECT IN WATER-FILLED CARBON

NANOTUBES

The most interesting topic, where thediscrete(anti)kink
states may play an essential role, is proton conduction in HB
chains of water molecules. Even though the(two-stage)
mechanism of proton conduction in these chains was formu-
lated long ago[1–5] that involves the propagation of two
types of defects(ionic and bonding), the molecular basis for
the fast proton translocation along HB chains is not yet fully
understood. In the present paper, we restrict ourselves only to
the study of the existence and stability properties of theionic
defects, which due to the cooperative nature of hydrogen
bonding appear to beextendedobjects. The dynamics of
these defects can be described in terms of the soliton theory,
so that the extended positive and negative defects are nothing
more than topological antikinks and kinks, respectively.
More precisely, the(hydronium) H3O

+ ion can be treated as
an ion-centered antikink, the(hydroxide) OH− ion an ion-
centered kink, the Zundel ionsH5O2

+d a proton-centered an-
tikink, and so on. Furthermore, one may also say that the
so-called Grotthuss mechanism occurs onlylocally, in the
region where the(anti)kink states are formed and stabilized.

For two decades, a linear HB chain of water molecules
(“proton wire”) was considered as a theoretical model for
proton transfers across biological membranes[1], particu-
larly through bacteriorhodopsin or half channels in the trans-
membrane F0 portion of ATP synthase. However, exact data

for interatomic forces are uncertain, except for recentab ini-
tio results obtained by Pomès and Roux[12]. Besides the
biological systems consisting of HB chains of water mol-
ecules, wherediscretetopological soliton solutions may play
an essential role, at present carbon nanotubes filled by liquid
water are of great interest[13,14,16]. These nanotubes show
great potential for use in nanodevices. Nanotubes provide
cylindrical channels similar to pipes used in the macroscopic
world. Typically, the inner diameter of a carbon nanotube is
less than 10 nm. As a consequence, due to so small cross
section, the interaction of water molecules with the nanotube
walls is conceivably strong that prevents fluidic throughflow.
This viewpoint has been supported by experiments on the
behavior of water in nanosize channels[13]. In particular, it
was shown that for extremely thin channels, which are com-
parable in size with interatomic distances, the continuum ap-
proach of fluid dynamics is not valid anymore. Moreover, the
strong interaction between the water penetrated inside the
tube and the wall appears to be of chemical nature. As a
result, one-dimensional water wires are believed to be
formed and the kink mechanism of proton transfers should
take place in these systems. Recently[14,16], this experi-
mental evidence has been supported byab initio simulations
of the dynamics of a carbon nanotube placed in a water res-
ervoir. As observed from these studies, the initially empty
central channel of the tube was rapidly filled by water from
the reservoir, forming a preferentially aligned water wire
with each water dipole oriented in the same direction parallel
to the nanotube axis[see, e.g., Fig. 1(c) of Ref. [14]].
Carbon-water interface energies have been calculated, sup-
porting a strong binding of an individual water molecule
inside the nanotube to its wall. These studies have also
shown the existence of stable complexes H2n+1On

+ and single
ions OH−.

As follows from the above description of structure and
dynamics of water-filled carbon nanotubes, these systems
can be modeled by the 2CO chain model. However, so far
our study of both the 2C models has been performed in the
dimensionlessdescription that involves four parameters: the
three stiffness constants of the ion-ion, ion-substrate, and
proton-proton couplingski,o,p and the curvature of the Morse
potentialb. The study has been focused on the existence of
switchings of stability, which occur at certain(critical) val-
ues of these parameters. In order to know whether these(di-
mensionless) values have any physical sense, we need to
pass to the corresponding system parameters given in full
dimensions, using the relations:Ki,o,p= l−2«0ki,o,p and b
=b / l with l being the length of theX¯X bond and«0 the
barrier height in the proton potential. Thus, according to the
estimates based upon crystallographic and spectroscopic
measurements for ice(see Ref.[26] and references therein),
l =2.76 Å (the lattice constant for ice[56]), «0=0.3 eV, Kp
=22 N/m, Ki =13 N/m, Ko=4 N/m, andb=7.4 Å−1. This
case corresponds to the following dimensionless values:kp
=33.8,ki =20.0,ko=6.2, andb=20.4. Someab initio calcu-
lations [27] give b.2.7 Å−1 for water systems, while«0
.0.3 eV. Other computations[38] have determined the
proton-proton interaction Kp.80 Å−2 kcal/mol
=56 N/m skp.60d, «0.10 kcal/mol=0.4 eV.

On the other hand, the critical values at which the first
switching of stability occurs in both the 2C chains can briefly

FIG. 10. Dependence of the kink energyE on the coupling
constantkp in the 2CA chain(ki =60 andk0=0) with b=20. Solid
lines show stable and dashed lines unstable states.
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be rewritten as follows. In the 2CO chain(ki =0 andko=5),
for the antikink kp.16 if b=10 and kp.11 if b=20,
whereas for the kink we haveko=70 andkp,100 if b=10.
In the 2CA chain(ko=0 and ki =5), for the antikink kp
.54, 16, and 11 ifb=5, 10, and 20, respectively, whereas
for the kink we haveki =60 andkp.90 if b=20. From the
comparison of these values with the realistic(dimensionless)
estimates given above(ko,6, ki ,20, kp,30–60, andb
,7–20) and the main result of Sec. III(according to which
for largerki,o andb the first switching of stability occurs at
smallerkp), one can conclude that in realistic systems at least
one switching may occur for the antikink, while for the kink
such a switching seems to be hardly realized. Indeed, as il-
lustrated by curves 1 and 2 of Figs. 6 and 8, forkp
,50–100, withko=5 andb=10, the proton-centered anti-
kink that describes the H5O2

+ ion and the ion-centered kink
that corresponds to the OH− ion are stable. Moreover, the
antikink mobility close to the point of stability switching is
maximal, while the Peierls-Nabarro(PN) barrier for the OH−

ion is finite. This is why the molecular dynamics simulations
by Savin and one of the authors(A.V.Z.) of the present paper
[26] have revealed the higher(by one order) mobility of the
positive ionic defects compared to the negative defects.

Finally, it should be noticed that the studies in this paper
have been performed forwide regions of the system param-
eters, whereas in nature, particularly in biology, these param-
eters are fixed. These parameters might be varied under syn-
thesis of nanofluidic devices, e.g., varying the occupancy of
water molecules inside nanotubes and possibly the periodl
(and therefore the parameterb) of a HB chain.

V. CONCLUSIONS

In this paper, we have studied the solitary wave excita-
tions (2C kinks and antikinks), the whole variety of their
narrow stationary profiles(states), switchings of their stable
states to unstable ones and vice versa, and their propagation
along a diatomic(2C) chain comprising the proton and
heavy-ion sublattices. The heavy-ion component creates the
two-dimensional potentialVsu,rd, with proton sud and ion
srd displacements, that plays a key role for proton transfers
within the hydrogen bond. We have considered the function
Vsu,rd as a 2C generalization of the intrabond proton poten-
tial constructed earlier[31] from two single Morse-type
functions placed tail-to-tail at some distance, providing a
double-well shape of the functionVsu,rd in the variableu at
r=0. As emphasized previously[30,31], this potential has
been found to offer the best combination of accuracy in re-
producing quantum-mechanically computed potentials
[27,29]. The frequency spectrum and phase velocities of
small-amplitude oscillations have also been studied for these
models.

The studies here have mainly been done for two diatomic
models of archetypal simplicity that admit 2C topological
soliton solutions. The first of these is a diatomic chain, where
each heavy ion is subject to an on-site potential of single-
minimum topology, so that its linear two-band spectrum con-
sists of onlyoptical linear oscillations. The distance between

the external sites provides the existence of the intrabond pro-
ton potential of a double-well form. The second one is the
two-sublattice chain isolated from any external forces and
therefore its lower branch of the linear spectrum is ofacous-
tic type. These two chains have been referred above as to the
2CO and 2CA models, respectively.

Drawing the analogy between the 1C and 2C models, we
have carried out a numerical study of stationary(anti)kink
states in both the 2CO and 2CA chains. As a result, we have
found that the stability switching effect also occurs in the
two-sublattice chain. In this case, the number of switchings
is determined by elasticity of the heavy-ion component; the
stronger is the coupling of heavy ions either between them or
with an external on-site potential, the larger is the number of
stability switchings. This is the main result of our findings in
the present paper because it was not possible at all to draw
intuitively any conclusion on the behavior of the transpar-
ency regime(points or windows) on the elasticity properties
of the background heavy-ion sublattice. Moreover, one could
think that due to the softness of the background heavy-ion
chain, even windows of finite size might exist in the(anti-
)kink transparency along the 2C chain used to describe the
proton transport in HB chains.

Similarly to the 1C model, in the 2C chain, the asymmet-
ric and zigzaglike 2C(anti)kink solutions have been shown
to exist. The bifurcation scenario of stability switchings in
the 1C and 2C models is the same and therefore we did not
focus on this issue in the present paper. However, in the 2C
chain, we were dealing with a kink-antikink asymmetry, the
property being absent in the 1C chain. As a result of this
asymmetry, the stability switchings for the kink and the an-
tikink occur at different values of the system parameters.
Since the PN barrier at the stability switching points practi-
cally vanishes, on the basis of the results of Sec. III one can
conclude that the mobility of the kink is always lower than
the mobility of the antikink in both the 2CO and 2CA chains.
This result supports the molecular dynamics simulations for
the 2C model, where the proton-proton coupling was of the
Coulomb type[26]. The main feature of the 2C model lies in
lowering the intrabond barrier in the hydrogen bond by vir-
tue of the heavy ions. As a result of this barrier change, one
can observe the lowering of the energy states and deviations
of the ion- and proton-centered(anti)kink profiles from the
corresponding 1C configurations. Owing to softness of the
diatomic chain, the 2C profiles appear to be rather narrow.
Moreover, their shape appears to be quite sophisticated and
not so obvious and “monotonic” as in the corresponding 1C
kink-bearing models, crucially depending on the model pa-
rameters[notice, for instance, the “anomalous” symmetry of
theQn profiles plotted in Figs. 4(d), 6(b), and 6(d) as well as
the qn profiles shown in the insets of Fig. 7].

Finally, one should emphasize that the role of one-
dimensional chains of HB water molecules in mediating pro-
ton transfers through membranes is of fundamental impor-
tance not only in a number of biological systems, but also in
nanotechnological processes. Since the discovery of carbon
nanotubes, which can serve as models for biological proton
channels, many interesting properties of these tubes have
been revealed. In particular, recent experiments and simula-
tions [12–16] showed that water can fill nanotubes forming
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HB chains that provide excellent conductors for proton cur-
rents through pores across membranes. Protons are believed
to be conducted along the chain of water molecules inside a
pore without the movement of the heavy(oxygen) atoms or
ions, according to thesoliton mechanism. The heavy ions
only displace from their equilibrium positions, changing the
shape of the double-well potential for proton transfers in the
hydrogen bridges. At those critical parameter values, at
which the symmetry switching of stability of(anti)kink
states occurs and the PN relief disappears, the proton con-
duction becomes anomalous. This interesting property rigor-

ously studied in the present paper from a general point of
view may be used in making various nanofluidic devices.
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